Martina Ilarri is a Researcher at the Benthic ecology and environmental solutions lab, CIIMAR-UP. Her main research interests focus on studying the changes (taxonomical and functional diversity) associated with the introduction of invasive aquatic species at different ecological levels (populations, communities and ecosystems). In addition, she focuses on understanding changes in the functioning of aquatic communities due to the impacts of climate change and extreme weather events.
MSc in Data Science, 2021 (ongoing)
University of Porto, Portugal
PhD in Marine and Environmental Sciences, 2012
University of Porto, Portugal
MSc in Biological Sciences - Zoology, 2008
Universidade Federal da Paraiba, Brazil
BSc in Biological Sciences - Marine Biology, 2005
Universidade Federal Fluminense, Brazil
As the effects of climate change continue to intensify, non-native species are becoming more prevalent in estuarine ecosystems. This has implications for the taxonomic and functional diversity of fish communities. Historically, biodiversity has been a synonym of taxonomic diversity, however this approach often fails to provide accurate insights on ecosystem functioning and resilience. To better understand how climate change is impacting fishes and their traits’ composition, a long-term dataset from Minho Estuary (NW Iberian Peninsula) fish assemblage was analyzed. The results suggest that climate change and extreme weather events altered the prevailing trait modalities of fishes, which led to the overall decrease in functional diversity of the fish assemblage over the course of a decade. This decrease is associated to the loss of some trait modalities that are exclusively found in native species. On the other hand, the invasive species added novel traits associated with the conditions of high temperatures and low precipitation regime currently observed in the studied area. Our results highlight that the shift in the presence and dominance of some traits is directly influenced by climatic changes. Also, despite the addition of novel modalities by the invasive species, the fish assemblage is now less functional and taxonomically diverse than previously.
Extreme weather events are becoming more frequent as a result of climate change, and the increasing frequency of these events may lead to significant changes in fish assemblages. In this sense, this work aimed to study the effects of climate change and extreme weather events on fish assemblages in the Rio Minho estuary (Portugal). Between 2010 and 2019, continuous weekly sampling with fyke nets was carried out to assess the dynamics of fish assemblages in the estuary. In addition, temperature and precipitation data were obtained from satellite information to assess the relationship between climatic variables and fish composition, structure, and diversity. Fish populations changed significantly over time, becoming less diverse and largely dominated by a few, mostly invasive species (e.g., carp, goldfish, pumpkinseed, and tench), while the abundance of most native species declined over the years (e.g., panjorca, stickleback, and shad). High temperatures and low precipitation negatively affected native species, while the invasive species benefited from increased temperatures and extreme weather events (droughts and floods).
Bivalves may play a major role in structuring aquatic communities. This may be especially relevant in aquatic communities dominated by non-native invasive bivalves, which can contribute to the increase of habitat homogenization. In this study, we assess how habitat homogenization, through the reduction of empty bivalve shells identities, influences the macroinvertebrate assemblages. Towards this end, a manipulative experiment with the empty shells of two native (Potomida littoralis and Unio delphinus) and one non-native (Corbicula fluminea) species was performed. Seven treatments were prepared, three of them consisting of homogeneous substrates using shells of one species, and four of them consisting in heterogeneous substrates using more than one species. The associated fauna colonizing different treatments was analyzed through taxonomic and trait-based approaches. Our results showed that the substrate complexity influenced the density of macroinvertebrates, with the heterogeneous treatments significantly yielding more dense assemblages. Also, the trait patterns differed among the levels of habitat heterogeneity, influencing mainly organisms that feed on microphytes of both small and big sizes, that inhabit areas with slow to moderate water flow, and that have short and long live cycles. Further, the functional diversity was not influenced by the substrate heterogeneity. Therefore, the habitat homogenization, through the accumulation of non-native C. fluminea empty shells in the river bottom, did not affect the functional diversity of the macroinvertebrate assemblages.
University of Helsinki ResearchGate Website
University of Minho ResearchGate Website
CNR - Water Research Institute ResearchGate